Dealing with bone loss in difficult primary Total Knee Arthroplasty Jean-Noel Argenson, Matthieu Ollivier, Xavier Flecher, **Sebastien Parratte** Institute for Locomotion Sainte Marguerite Hospital, **Marseille, France**

Vision 2020: Perspectives of revision TKA

*The values are given as the number of procedures, with the 95% CI in parentheses. Confidence intervals are approximate values only and did not incorporate some sources of uncertainty (e.g., future population) in the data.

Knee Osteoarthritis

Total Knee Arthroplasty

- Alleviating pain
- Restore Knee Function

TKA: Basic requirements

"Just enough, not too much"

Alignment
Fixation

Stem and augments

Basic questions

Systematic

Stability

Alignement

Pr. J.M. Aubaniac, 1972

Systematic preoperative Evaluation

1. Clinical evaluation :

- Range of motion
- Sagittal and frontal stability +++
- Patellofemoral joint status

Systematic preoperative Evaluation

Radiographic evaluation

TKA ⇔Stable Knee

Instability after TKA 10 to 22%

Compromise Motion stability

THE JOURNAL OF BONE & JOINT SURGERY • JBJS.ORG VOLUME 90-A • NUMBER 1 • JANUARY 2008

Instability After Total Knee Arthroplasty

By Sebastien Parratte, MD, and Mark W. Pagnano, MD

An Instructional Course Lecture, American Academy of Orthopaedic Surgeons

VAR mean : 9° (2°-22°)

VALG mean : 8° (2°-18°)

Improving Design of TKA Moving towards Persona(I) fit

LPS flex

LP<mark>S flex +</mark> wedge +stem

C C K

RHK

Management of bone loss

- 1. Where ?
- 2. Why?
- 3. What can we use ?
- 4. Why and how do I use Tantalum

In the real life

Cavitary = fill

In the real life Segmental = rebuild

1st Key point at this step: the bone stock

2nd Key point at this step: the ligaments

Need for higher constraints

Problems
Higher constrains
Increase bone stress
Need for a stem

Different type of stems

Tibial / Femoral : - Cemented

- Uncemented
 - Hydroxy-apatite
 - Trabecular-metal

Hybrid Fixation

The influence of different tibial stem designs in load sharing and stability at the cement–bone interface in revision TKA; Completo The Knee 2008

Stems in TKA ?

<u>Advantages</u> : •Better stability •Better alignment •Better stress loading : - Proximal tibia -Distal femur

Indications : •Constraint TKA : ligament failures

Bone loss and revision

Post-traumatic arthritis

Strategies of stem fixation and the role of supplemental bone graft in revision total knee arthroplasty; Nelson CL. JBJS 2003 The Role of Stems and Augments for Bone Loss in Revision Knee Arthroplasty; Marbry M. JA 2007

bone loss of the femur and tilsa.

Anderson Orthopedic Research Institute

Combination with augments

Goals of the augments

 Fill the defect
 Improve implant stability
 Bone ingrowth

A need for modularity

Ex. of instability: loose in extension

- Augment distal femur
- Use stem
- Increase constraint : LCCK type

Bone loss in difficult primaryTKA

Large deformities

Previous osteotomy

Post-traumatic arthritis

Post-traumatic OA

⇒Need for an augment = Stems +++

Identify the bone loss : CT

Fill the bone loss

0

Goals of the augments – Compensate the defect – Improve stability

Lower function, quality of life, and survival rate after total knee arthroplasty for posttraumatic arthritis than for primary arthritis

Alexandre LUNEBOURG^{1,3}, Sebastien PARRATTE^{1,3}, André GAY^{2,3}, Matthieu OLLIVIER^{1,3}, Kleber GARCIA-PARRA¹, Jean-Noël ARGENSON^{1,3}

Bone loss and Malunion external rotation

One Stage

The good use of modularity Allograft Augments

Bone Substitute

Cones TMT®

Choose the correct modular component

Planning modularity : Femur

Fig. 48

Then use a stem

Long stem Metaphysal fixation

Short stem Cemented

Combined with cone

Levine B et al (The journal of Knee Surg, 2007, 20, 185-94)

One basic principal: Tantalum should be directly in contact with the host bone

Problems with long stems

Limits in Primary TKA, valgus knee in 78 years old woman

Rotating hinge

Trauma : major bone loss

TM femoral Augment

Conclusion

Pre-op analysis

 Wear,
 Bone stock
 Alignement
 Stability

Pre-operative planning
 Constraint
 =>Just enough, not too much

Planning is key: Know your tools

Implant

Bone loss filling

Stems

Order for the good ones !